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Lecture 03:  Bare-Bones Haskell Continued:

o Function Application = Rewriting by Pattern Matching
o Haskell Types and Polymorphism



Function Application by Matching and Rewriting
Recall: Rewriting involves matching the left-hand side of a function definition 
with a subexpression, where variables are instantiated to subexpressions. 
Function definitions are tried in order from the top. 

cond (not True) (Succ Zero) (pred (Succ Zero))  

=> cond False (Succ Zero) (pred (Succ Zero)) 

=> (pred (Succ Zero)) 

=> Zero

Data (constructors) in green, 
Variables (including function 
names) in black.

I’ll use => to indicate “rewrites to” 
and the “redex” = term being 
rewritten, will be underlined.



Function Application by Matching and Rewriting
Three important things to remember about defining functions by pattern 
matching:

(1)  The left-side of a function definition must consist of a function name 
followed by expressions consisting only of constructors and variables, and 
variables can occur at most once:

Not allowed:

cond  True x  y          =  x
cond  (not True)  x  y  =  y

xor  x  x  =  False
xor  x  y  =  True



Three important details on matching in Haskell:

(1) Continued...

Note that constructor expressions can be as complicated as you want!

rightAssoc (Plus (Plus (Val Zero)  (Val Zero))  (Val Zero) )

=>  Plus (Val Zero)  (Plus (Val Zero)  (Val Zero))

Function Application by Matching and Rewriting



Three important details on matching in Haskell:

(2)   The patterns (LHSs) have to account for all possible expressions, that is, 
the range of the patterns has to be exhaustive.  Haskell can check this for you!

incr Zero =  (Succ Zero)      What about (Succ Zero)??    

Better:     

incr Zero = (Succ Zero)     
incr (Succ x) = (Succ (Succ x) )

Best:     

incr x     = (Succ x)

Functional Application by Matching and Rewriting



Three important details on matching in Haskell:

(3) You can use “wildcard” variables, that match anything and don’t create a 
binding:

isZero Zero = True
incr _      = False

If you put such a rule LAST, it can account for anything other expressions
have not matched yet. 

Functional Application by Matching and Rewriting



Haskell Type System
Type declarations are given by the syntax:

expression :: type-name

Examples:

False :: Bool

(not (not False)) :: Bool

Function types have the form:

argument-type -> result-type

Example:

not :: Bool -> Bool

Reading: Hutton Ch. 3



Haskell Type System
You can find the type of an expression in the repl 
using :type or :t

Reading: Hutton Ch. 3

Main> :type (not (not True))
(not (not True)) :: Bool

Main> :t (isZero Zero)
(isZero Zero) :: Bool

Main> :t not
not :: Bool -> Bool

Main> :t isZero
isZero :: Nat -> Bool

Main> :t odd
odd :: Nat -> Bool



Haskell Type System
You should specify a type as part of the definition of a function:

In general, this is good practice, and expected as part of good Haskell 
programming style.  It provides documentation about how the function 
works and in some cases, is necessary to be specific about what you want the 
function to do. 

Reading: Hutton Ch. 3



Haskell Type System
If you don’t specify a type, Haskell can infer the types from the expressions:

data Bool = True | False

data Nat = Zero | Succ Nat

even Zero        = True       Must be Nat -> Bool!
even (Succ x)    = odd x

Haskell uses the following rule to infer the types of expressions:

f :: A -> B     e :: A

(f e) :: B

Therefore,  (even Zero) must have the type  Bool:
even :: Nat -> Bool     Zero :: Nat

(even Zero) :: Bool   

Reading: Hutton Ch. 3

premises

conclusion



Haskell Type System
The type system also applies to the data types, and constructors have types 
just like function types, except the constructors don’t do anything except 
structure the data. 

Reading: Hutton Ch. 3

Main> :t Succ
Succ :: Nat -> Nat

Main> :t Val
Succ :: Nat -> Expr

Main> :t Plus
Plus :: Expr -> Expr -> Expr



Haskell Type System
Functions and constructors of more than one argument have types with 
multiple “arrows”; the last type is the result type and the others are the 
argument types:

Reading: Hutton Ch. 3

Main> :t cond
cond :: Bool -> Nat -> Nat -> Nat



Polymorphic Types
Recall:  Many functions (and data types) do not need to know everything 
about the types of the arguments and results.

Let’s start with data types. Why should we have to define a list type for 
every possible kind of data in the list?

Reading: Hutton Ch. 3.7

a is a type variable, 
and just like any other variable,
it can stand for anything (in this
case, any type). 

Compare Java Generics:

class List< T > {

T element;
.....

} 

Instead, we can define polymorphic types using
type variables:

(List Nat)  is isomorphic to ListNat



Polymorphic Types Reading: Hutton Ch. 3.7

Main> :t (ConsNat Zero NilNat)
(ConsNat Zero NilNat) :: ListNat

Main> :t (Cons Zero Nil)
(Cons Zero Nil) :: List Nat

Main> :t (Cons True (Cons False Nil))
(Cons True (Cons False Nil)) :: List Bool

Main> :t (Cons (Cons True Nil) Nil)

What’s the type?



Polymorphic Types Reading: Hutton Ch. 3.7

Main> :t (Cons (Cons True Nil) Nil)
(Cons (Cons True Nil) Nil) :: List (List Bool)

Haskell can also infer polymorphic types:

Main> :t Nil
Nil :: List a

Main> :t Cons
Cons :: a -> List a -> List a

Main> identity x = x

Main> :t identity
identity :: a -> a

Main> test x y = x

Main> :t test
test :: a -> b -> a



Polymorphic Types Reading: Hutton Ch. 3.7

Functions also can have polymorphic types when they don’t need to know exactly what 
type of data they manipulate.

Most of these functions involve restructuring or selecting out pieces of data, for example 
in lists:

Main> :t second
second :: List a -> a

Main> a = Cons True (Cons False Nil)

Main> :t a
a :: List Bool

Main> head a
True

Main> tail a
Cons False Nil


